- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Ritz, Anna (2)
-
Anderson, Oliver (1)
-
Anderson, Oliver F (1)
-
Barelvi, Altaf (1)
-
Barelvi, Altaf Ayyubi (1)
-
Jan, Iris (1)
-
Norman, Ainsley (1)
-
O'Brien, Aden (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
Shao, Mingfu (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Shao, Mingfu (Ed.)Graphs are powerful tools for modeling and analyzing molecular interaction networks. Graphs typically represent either undirected physical interactions or directed regulatory relationships, which can obscure a particular protein’s functional context. Graphlets can describe local topologies and patterns within graphs, and combining physical and regulatory interactions offer new graphlet configurations that can provide biological insights. We present GRPhIN, a tool for characterizing graphlets and protein roles within graphlets in mixed physical and regulatory interaction networks. We describe the graphlets of mixed networks in B. subtilis, C. elegans, D. melanogaster, D. rerio, and S. cerevisiae and examine local topologies of proteins and subnetworks related to the oxidative stress response pathway. We found a number of graphlets that were abundant in all species, specific node positions (orbits) within graphlets that were over-represented in stress-associated proteins, and rarely-occurring graphlets that were over-represented in oxidative stress subnetworks. These results showcase the potential for using graphlets in mixed physical and regulatory interaction networks to identify new patterns beyond a single interaction type.more » « lessFree, publicly-accessible full text available July 21, 2026
-
Anderson, Oliver F; Barelvi, Altaf Ayyubi; O'Brien, Aden; Norman, Ainsley; Jan, Iris; Ritz, Anna (, bioRxiv)Molecular interaction networks are a vital tool for studying biological systems. While many tools exist that visualize a protein or a pathway within a network, no tool provides the ability for a researcher to consider a protein's position in a network in the context of a specific biological process or pathway. We developed ProteinWeaver, a web-based tool designed to visualize and analyze non-human protein interaction networks by integrating known biological functions. ProteinWeaver provides users with an intuitive interface to situate a user-specified protein in a user-provided biological context (as a Gene Ontology term) in five model organisms. ProteinWeaver also reports the presence of physical and regulatory network motifs within the queried subnetwork and statistics about the protein's distance to the biological process or pathway within the network. These insights can help researchers generate testable hypotheses about the protein's potential role in the process or pathway under study. Two cell biology case studies demonstrate ProteinWeaver's potential to generate hypotheses from the queried subnetworks. ProteinWeaver is available at https://proteinweaver.reedcompbio.org/.more » « less
An official website of the United States government
